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ABSTRACT 

 Ceramic materials such as silicon carbide (SiC) are promising candidate materials 

for nuclear fuel cladding and are of interest as part of a potential accident tolerant fuel 

design due to its high temperature strength, dimensional stability under irradiation, 

corrosion resistance, and lower neutron absorption cross-section. It also offers drastically 

lower hydrogen generation in loss of coolant accidents such as that experienced at 

Fukushima. 

            With the implementation of SiC material properties to the fuel performance code, 

FRAPCON, performances of the SiC-clad fuel are compared with the conventional 

Zircaloy-clad fuel. Due to negligible creep and high stiffness, SiC-clad fuel allows gap 

closure at higher burnup and insignificant cladding dimensional change. However, severe 

degradation of SiC thermal conductivity with neutron irradiation will lead to higher fuel 

temperature with larger fission gas release. 

            High stiffness of SiC has a drawback of accumulating large interfacial pressure 

upon pellet-cladding mechanical interactions (PCMI). This large stress will eventually 

reach the flexural strength of SiC, causing failure of SiC cladding instantly in a brittle 

manner instead of the graceful failure of ductile metallic cladding. The large interfacial 

pressure causes phenomena that were previously of only marginal significance and thus 

ignored (such as creep of the fuel) to now have an important role in PCMI. Consideration 

of the fuel pellet creep and elastic deformation in PCMI models in FRAPCON provide 
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for an improved understanding of the magnitude of accumulated interfacial pressure. 

Outward swelling of the pellet is retarded by the inward irradiation-induced creep, which 

then reduces the rate of interfacial pressure buildup. Effect of PCMI can also be reduced 

and by increasing gap width and cladding thickness. However, increasing gap width and 

cladding thickness also increases the overall thermal resistance which leads to higher fuel 

temperature and larger fission gas release.   An optimum design is sought considering 

both thermal and mechanical models of this ceramic cladding with UO2 and advanced 

high density fuels. 
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CHAPTER I 

  INTRODUCTION 

1.1 Motivation  

 The long history of zirconium cladding design fuel has provided the nuclear 

industry with reliable power generation and considerable low risk of fuel failures. 

However, after three major nuclear accidents: Three Mile Island, Chernobyl, and 

Fukushima Daiichi, the research and development of the nuclear industry for fuel rods 

has aimed toward the accident tolerant fuel (ATF), which has higher safety margin that is 

capable of enduring longer time under a loss of coolant accident scenario (LOCA), and 

also maintaining or even improving its performance during normal operations [1]. 

 Interests had been drawn to ceramic cladding materials, one of the most 

promising candidate cladding materials for new light water reactor (LWR) fuel design is 

silicon carbide (SiC), mainly due to its high temperature strength, dimensional stability 

under irradiation, and better corrosion resistance compared to the conventional 

zirconium-based cladding. However, the brittle nature of ceramic material is a major 

drawback which may limit its usage after the contact of pellet and cladding. In addition, 

the significant degradation of thermal conductivity under irradiation may also deteriorate 

its performance [2]. Considering all issues, investigations are necessary to assess the 

performance of ceramic cladding designed fuel before applying it to practical use.   
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Figure 1.1 Major concerns of accident tolerant fuel design [1] 

1.2 Objectives      

 The objective of this research is to investigate the pellet-cladding mechanical 

interactions (PCMI) of advanced ceramic claddings with ceramic fuels. PCMI creates 

significant interfacial pressure that deforms the ductile metallic cladding plastically 

shown in Fig. 1.1.2. For ceramic cladding that possesses higher stiffness, this disastrous 

deformation may be insignificant.  

 Monolithic SiC-clad fuel is used for the PCMI investigation. Due to the 

differences in material properties, the effect of PCMI may have large discrepancy 

between metallic and ceramic cladding. The performance of monolithic SiC cladding 

designed fuel under must therefore be evaluated, by using the Nuclear Regulatory 

Commission (NRC) validated fuel performance code, FRAPCON-3.4 [3]. This work is 

accomplished through four steps.  
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Figure 1.2 Zircaloy cladding deformation after PCMI [4] 

(a) Implementation of SiC thermal and mechanical properties:  

 FRAPCON-3.4 only allows the user to choose cladding materials from a selection 

of zirconium-based alloys. High-purity, monolithic SiC material properties (thermal and 

mechanical) are implemented into the material module.   

(b) Modification of pellet-cladding deformation models:   

 FRAPCON-3.4 uses a rigid pellet model (FRACAS-I) for pellet-cladding 

mechanical calculations. It neglects all stress-induced deformations of the pellet. For the 

magnitude of interfacial pressure created and the ductile nature of Zircaloy claddings, this 

rigid pellet model may give a reasonable approximation. For ceramic SiC cladding with 

higher interfacial pressure and brittle nature, this model may fail to capture important 

behaviors.  Therefore, the “soft-pellet” model is developed in this work.   

(c) Fuel performance simulation under LWR condition:  

 With the implementation of SiC material properties, the newly developed 

FRAPCON-USC can now estimate the fuel performance of SiC-clad fuel. Two testing 

cases: low and high-burnup under LWR conditions was used to compare the performance 
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of SiC-clad fuel with the conventional Zircaloy-clad fuel. The results will show the 

advantages and disadvantages of SiC-clad fuel.  

(d) Evaluation of the soft-pellet model 

 Although not implemented into FRAPCON-USC, the significance of stress-

induced pellet deformations such as elastic deformation and creep may rise due to the 

PCMI-created large interfacial pressure. Evaluations and simple calculations are made to 

estimate its significances to the hoop stress accumulated on the ceramic cladding.    
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CHAPTER II 

LITERATURE REVIEW 

 

2.1 Silicon Carbide  

2.1.1 Silicon Carbide 

 Silicon carbide has been considered for application in high temperature, high 

irradiation environments since first investigated by Rovner and Hopkins for nuclear 

applications [5]. It has also been considered as a structural coating on fuel kernels for 

high-temperature gas-cooled reactor for many years [6], and as an inert matrix for fuel 

pellets [7]. SiC has several advantages over the conventional zirconium-based alloys. It 

possesses better dimensional stability under irradiation, more resistant to corrosive 

environment, moderate degradation of mechanical properties at elevated temperatures, 

insignificant creep rate at high temperature, and better neutron efficiency by having lower 

neutron absorption cross section [8].  

 One of the main obstacles preventing the application of SiC as a structural 

material is its brittle behavior, as it cannot dissipate accumulated stresses after PCMI 

through plastic deformation and creep. As a result, SiC does not demonstrate the graceful 

failure mechanism like a ductile metal does. It fractures immediately once the hoop stress 

reaches the flexural strength [9]. Another concern is the severe degradation of SiC 

thermal conductivity with irradiation. Stoichiometric SiC possesses excellent thermal 

conductivity as-fabricated, but rapidly degrades to a much lower thermal conductivity as 
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it reaches the saturation dose. This undesired property is due to the accumulation of 

irradiation-induced defects [10]. 

2.1.2 Silicon Carbide Composites 

 In order to make practical use of SiC as structural materials, additional strength 

and flexibility are provided by woven SiC fibers. The composite consists of SiC fibers 

arranged parallel or braided, bonded together with a chemical vapor deposited (CVD) 

SiC matrix. The fibers provide strength and the ability to withstand localized fractures 

without completely failing the structure, while the matrix serve as a hermetic seal to keep 

in all fission products. Fig. 2.1 and 2.2 show the monolithic, Duplex, and Triplex SiC 

cladding tube [11, 12] 

 

Figure 2.1 Monolithic SiC tube (left) and Triplex SiC tube (right) [11] 

 

Figure 2.2 Westinghouse Duplex SiC cladding tube [12] 
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2.1.3 Crystal Structure 

The material properties of silicon carbide strongly relate to its crystal structure. 

The large number of polytypes (over 200 crystal structures) also increases its complexity. 

Various polytypes is a result from the different stacking of bilayers, shown in Fig. 2.3 

[13]. Rhombohedral and hexagonal SiC polytypes are called α-SiC, where cubic polytype 

is called β-SiC. In Fig. 2.4, a tetrahedral arrangement of Si and C atoms indicates the 

crystal structure of β-SiC. 

The bonds between the Si and C atoms have a primarily covalent nature, with 

slightly ionic bonding characteristics due to silicon’s higher electronegativity. The most 

stable SiC structure is comprised of Si and C in a stoichiometric (1:1) amounts, because 

of its dominating covalent bonding. For stoichiometric SiC, phase stability is strongly 

related to temperature. The cubic structure of β-SiC is more stable than other type of 

structures under 2273 K, where α-SiC dominates at higher temperature as illustrated in 

Fig. 2.5 [14]. 

 

Figure 2.3 Crystal structure of (a) α-SiC (b) β-SiC [13] 
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Figure 2.4 Tetrahedral arrangement of Si and C atoms  

 

Figure 2.5 Binary phase diagram of SiC [14] 

2.2 Cladding Designs 

2.2.1 Zirconium Alloy Cladding 

 Zirconium-based cladding has been adapted universally in the fuel rod designs of 

current commercial LWRs, based on a combination of desirable properties, e.g., high 

mechanical strength, high melting temperature (1852°C), good corrosion resistance, and 

particularly the low thermal neutron absorption cross-section, which can translate directly 
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into neutronic economy. To support this beneficial feature, Table 2.1 shows various 

thermal neutron absorption cross-sections of selected elements. Minor amounts of 

alloying elements are added to optimize the properties of cladding, i.e. Sn, Fe, Cr, Nb, 

and Ni. The addition of those elements enhances the cladding performance by the 

formation of intermetallic precipitates and secondary phase particles. 

 The issues of material properties degradation of cladding will become more 

detrimental if nuclear vendors were to extend the lifetime of current design cladding. The 

excessive hydrogen pickup of zirconium cladding will lead to the precipitation of 

zirconium hydrides. These hydrides have a poor mechanical strength and are brittle at 

room temperature, causing degradation of the mechanical strength and ductility. 

Accumulation of irradiation-induced dislocation loop and dissolution of secondary phase 

particle will also greatly influence the in-reactor performance of cladding. Therefore, to 

extend the lifetime and burnup of current fuel rods, new types of cladding materials will 

be needed. 

Table 2.1 Thermal neutron absorption cross-section of selected elements 
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2.2.2 SiC Monolithic Cladding  

Chemical vapor deposition (CVD) is one of the most favorable processing 

methods for SiC in nuclear applications, because of its capability to produce high density, 

purity, and crystalline structure [13]. Due to its advantages, the CVD method was applied 

to process the β-SiC matrix in the monolithic cladding. Schematic design of a typical 

LWR fuel rod is shown in Fig. 2.6. The cross section of a monolithic SiC cladding fuel 

rod is shown in Fig 2.7, where the dense SiC monolith layer acts as the hermetic layer for 

fission products.    

.   

Figure 2.6 Schematic design of a LWR fuel rod [15] 

 

Figure 2.7 Cross-section of a monolithic SiC cladding design 



www.manaraa.com

11 

 

2.2.3 SiC Duplex Cladding 

 Gamma Engineering, in collaboration with MIT, have investigated the application 

of SiC as a fuel cladding material for LWRs. They adapts the duplex design concept 

shown in Fig.2.8 that combines SiC monolith with SiC/SiC woven fibers to create a 

composite duplex cladding where the Zircaloy cladding is replaced [16]. The inner 

monolithic SiC layer provides the hermitic seal necessary to maintain structure stability 

of cladding and to contain the radioactive fission products. The outer composite is formed 

by SiC fibers woven around the monolith, and infiltrated with carbon-rich vapor to form 

a SiC matrix, bonding the fiber and monolith together. The composite layer provides 

additional strength to the cladding, and mitigates the propagation of cracks by allowing 

fibers to slide a small distance after matrix cracking occurs.  

 

Figure 2.8 Cross section of a Duplex SiC cladding design 

2.1.3.3 SiC Triplex Cladding 

 Recent developments of advanced SiC cladding at MIT have progressed toward 

the three-layered Triplex design [2], shown in Fig 2.9. It consists three functional layers: 

the monolithic SiC layer, the composite layer woven with SiC fiber, and the new outer 

environmental barrier coating (EBC) layer. The EBC is a thin coating (50~150 um) at the 
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outmost of the cladding to provide additional protection from corrosion. Studies have 

shown that, when loaded internally, the composite and EBC shared 21.6% ~ 37% of the 

total hoop stress [17]. However, the monolith is still the primary bearer of the stresses.  

 

Figure 2.9 Cross section and SEM cross section of the Triplex SiC cladding design 

2.3 Fuel Performance Code: FRAPCON-3.4 

2.3.1 Motivation of developing fuel performance code 

  The fuel element in a LWR is a rather simple object; however, it gets more 

complicated as material properties degrade during reactor service life. These changes 

include the dimensions and the material properties in both fuel pellet and cladding. Will 

the fuel elements able to serve its primary function, which is to generate power without 

failure? The ability to accurately predict the performance of fuel rods under extended 

service life is the major objective of nuclear vendors and regulatory for both economic 

and safety issues. 

 To achieve this goal, the U.S. Nuclear Regulatory Commission (NRC) has 

sponsored an extensive program for analytical computer code development. The steady-

state fuel performance code, FRAPCON, was developed by the Pacific Northwest 



www.manaraa.com

13 

 

National Laboratory (PNNL) to estimate the performance of a single fuel rod, and most 

important of all, to determine the integrity (safety margins established by NRC) of fuel 

rods during operation [3].  

2.3.2 Code structure 

 FRAPCON calculates the performance of a single fuel rod under LWR condition 

when initial fuel and cladding geometry, fuel enrichment, coolant condition, neutron flux, 

power history, and axial power shape are inputted. It also allows the user to specify the 

mesh size radially and axially for FRAPCON’s finite calculations of pellet heat 

conduction and fission gas release. FRAPCON takes these inputs and uses material 

properties of the specified fuel and cladding types (fuel: UO2 and MOX, cladding: 

Zircaly-2, Zircaloy-4, Zirlo, M5) that are given in the material database [18]. Fig. 2.10 is 

a simplified flowchart of FRAPCON-3.4, showing its iterative calculation procedures.  



www.manaraa.com

14 

 

 

Figure 2.10 Simplified FRAPCON-3 solution flowchart [3] 

2.3.3 Thermal-mechanical coupling 

 The coupling of thermal and mechanical modeling is very important because it 

will determine the existence of the fuel-cladding gap. The gap thermal conductance 

depends on its width and therefore changes the temperature distribution throughout the 

fuel and cladding shown in Fig. 2.11. Due to UO2’s low thermal conductivity, 

temperature gradient will induce high level of thermal stresses, eventually cracks the fuel 

into fragments and relocate. Void space that originally exists as the gap is then relocated 

into the fuel as pellet fragment jumps outward. 
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 The relocation model provides a modified fuel-cladding gap size by considering 

the shift of voids from gap into cracks in the fuel pellet shown in Fig. 2.12 for more 

realistic fuel thermal and mechanical calculations. After 50% of the relocated volume is 

recovered, FRAPCON then assumes the pellet to be a rigid structure, and therefore, hard-

contact occurs between the fuel and cladding.  

 

Figure 2.11 Schematic of fuel rod temperature distribution [3] 

 

Figure 2.12 (a) pellet/cladding at open-gap regime and (b) at closed-gap regime with 

voids originally in the gap relocate into pellet cracks 
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2.4 Other FRAPCON Modifications 

2.4.1 Implementation of internally and externally-cooled annular fuel rods 

The concept of creating an annular fuel pellet with central void for better fission 

heat removal was first investigated by Caner et al. [19]. The benefit of reducing the fuel 

temperature is to reduce the fission gas release, swelling, and chances of overheating. 

However, the function of central void is limited because heat can only be removed 

through the outer surface of the pellet, and it creates a channel for fuel and debris 

relocation.  

 Recently, MIT had developed an internally and externally-cooled (I&EC) annual 

fuel rod design [20], which creates an open channel through the center of the fuel to 

allow removal of heat at the inner surface of fuel rod. One method to utilize the I&EC 

annular fuel rod is through the sintered annular pellet. Annular pellets can be 

manufactured to achieve the same density as the standard pellets, but are more difficult to 

process due to their fine dimensions. The asymmetry of the pellet-cladding gap rise 

another concern [21]. The outer gap closes first, causing larger gap conductance at the 

fuel’s outer surface. As a result, the heat flux through the fuel rod’s outer diameter will 

increase, which reduce the departure from nucleate boiling ratio (DNBR). Three possible 

methods can be done to alleviate this problem: (1) increase the initial radial gap, (2) 

decrease the thermal conductivity of the outer gap,  and (3) decrease the inner gap [20].  

 FRAPCON was modified by Yuan et al. [22] to model the performances of I&EC 

annular fuel rods with Zircaloy cladding and sintered annular pellets, which is shown in 

Fig. 2.13 The modifications were focused on adding parameters for the simultaneous 
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calculations of the inner and outer cladding surface heat removal and also on the various 

fuel behaviors, where previously only the outer surface was of concern. 

 

Figure 2.13 Schematic of the I&EC sintered annular pellet design [22] 

2.4.2 Implementation of the Vibration Packed Fuel (VIPAC)  

Another new concept of fuel design adapted is the Vibration Packed (VIPAC) fuel 

[23]. It can be manufactured by crushing the fuel into shards, and then compacted into the 

fuel rods via vibration and compressive impacts.  

The main advantages of VIPAC fuel, as shown in Fig. 2.14, are easy loading and 

simple fuel manufacturing. These factors can improve the economic values of VIPAC 

fuel. Lack of fuel-cladding gap means the initial thermal resistance at the gap interfaces is 

greatly reduced. Due to its annular design, the asymmetry problem of earlier outer gap 

closure is found again. VIPAC fuel also shows fewer responses with chemical and 

mechanical interaction.  

The main difficulty with VIPAC is to achieve acceptable fuel smear density. High 

density of fuel brings the benefits of maximizing fuel loading and higher thermal 

conductivity. Current VIPAC fabrication is able to achieve up to 86% of theoretical 



www.manaraa.com

18 

 

density. It is possible that the density could further be increased through a selection of 

grain size, grain mixing ratios, and powdered uranium metal. 

VIPAC fuel is also implemented into modified FRAPCON, which already has the 

I&EC annular fuel design. The major differences in modeling the annular VIPAC fuel 

rods performances are: (1) the pellet/clad gaps are always closed, (2) radial relocation of 

fuel is removed, and the (3) thermal expansion contracts the inner annulus diameter but 

expands the outer diameter. 

 

Figure 2.14 Schematic of the I&EC VIPAC annular pellet design [23] 

2.4.3 Implementation of the high-burnup fission gas release model 

 The validated maximum burnup for FRAPCON is 62 MWd/kgU [3]. This burnup 

limit is based on the experimental data under this condition. This burnup limit may be 

sufficient for current fuel rods in LWRs, but future investigations are interested in the 

extension of maximum burnup because of applying stronger cladding materials and 

improved fuel rod designs. To achieve these objectives, modifications are necessarily for 

current FRAPCON in order to allow modeling of LWR fuel rods performance at a higher 

burnup. 
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 Modifications of FRAPCON by Long et al [24] investigated the fission gas 

release of fuel rod at very high burnup as shown in Fig. 2.15. Because fission gas release 

is considered to be the key parameter for fuel rod performance at high burnup. This new 

fission gas release model treats the buildup of fission gases at the rim region of the pellet, 

and adds a threshold fission gas release that is caused by gas saturation at high burnup. 

These modifications were made to adjust the current UO2 fission gas release model with 

the actual phenomenon of fission gas release at high burnup, therefore, the updated model 

is more capable of predicting fission gas release accurately. Overall, the threshold release 

model replaces the standard linear athermal model, with an exponential fission gas 

release model at higher burnup.  

 

Figure 2.15 Fission gas release for versions of FRAPCON based on the Manzel test [24] 

2.4.4 Implementation of the SiC Duplex cladding model 

 SiC has been initially investigated for applications in gas-cooled fission reactor, 

and the first wall of fusion reactor. Since then, large numbers of experiments have been 

conducted to measure the material properties of SiC its composites under reactor 
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conditions. This information can be compiled to obtain the their relationships [13]. In 

FRAPCON, each material property is governed by an individual subroutine, so 

experimental results fit quite well with the existing code structure. 

 To simplify the complexity of adding another coaxial composite cladding layer 

into FRAPCON’s solution scheme, the monolithic and composite layers of the duplex 

cladding was treated as one homogeneous material in the modeling by Carpenter et al. 

[16].  The modeling adapts the material properties of the SiC/SiC composite because it 

provides the cladding with the ability to liberate the accumulated excessive stresses from 

PCMI and possesses similar properties but less stiffness compare to monolithic SiC. This 

approach minimizes the modifications that are needed to the code, and provide an 

estimation of the cladding performance of the Duplex SiC–clad designed fuel rods. 
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CHAPTER III 

METHODOLOGY 

3.1 SiC Material Properties Modeling  

Material properties of SiC can be modeled as a function of temperature, neutron 

flux, burnup. The material properties of the high-purity β-SiC are implemented into 

FRAPCON to model the fuel performance using SiC cladding. The material properties of 

SiC are largely-scattered due to its strong dependence on crystal structure, impurity level, 

and as-fabricated porosity. It is difficult to find the appropriate equations for modeling 

material properties unless a specific fabrication method is being defined. In current 

modeling, the chemical vapor deposited monolithic SiC cladding is assumed to possess 

high-purity and dense microstructure. 

Table 3.1 Material properties of monolithic SiC/Zircaloy at room temperature  
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3.1.1 Thermal Conductivity 

Thermal conductivity of cladding is very important because not only does it affect 

the temperature of the cladding but also the temperature of the fuel. Higher thermal 

conductivity decreases both average cladding temperature and average fuel temperature, 

and general leads to a better performance over the fuel rod lifetime. The significant 

difference in material properties reflected in the thermal behaviors of Zircaloy vs. SiC. 

Therefore, it is vital to develop an accurate SiC thermal conductivity model under reactor 

condition. 

 Previous research conducted by Snead et al. [13] had discussed the thermal 

conductivity of SiC over a wide range of temperature, shown in Fig. 3.1. Two distinctive 

regions are indicated: (1) at temperature lower than 200 K, the thermal conductivity of 

SiC increase rapidly with temperature due to the large contribution of specific heat (2) 

beyond 200 K, the thermal conductivity of SiC decreases significantly with temperature 

due to the phonon-phonon scattering effect. The magnitude of thermal conductivity also 

depends on the microstructure of SiC [25], whereas below 300 K, the thermal 

conductivity increases monotonically with grain size. The grain size effect becomes less 

significant with increasing temperature due to the domination of phonon-phonon 

scattering effect. 

The goal of this research is to model the fuel performance under LWR and 

eventually gas-cooled fast reactor conditions. Only the relationship between thermal 

conductivity and temperature above 200 K will be discussed. It can be expressed as: 

                               [                  ]                            (3.1) 

where 
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k(T) = thermal conductivity of SiC (W/m-K) 

T = cladding temperature (K) 

 

Figure 3.1 Thermal conductivity of SiC at elevated temperatures [13] 

The thermal conductivity modeling of in-reactor SiC was based on the equation 

developed by Carpenter et al. [16]. Irradiation decreases the thermal conductivity 

dramatically by inducing point defects and defect-clusters in the SiC crystal, with a 

saturated concentration at 1 dpa [26]. The degradation of thermal conductivity in SiC 

composites is similar, but starts with a lower value of thermal conductivity due to the 

anisotropy introduced by the fibers.    

The rapid decrease and saturation of thermal conductivity of SiC is reported by 

several authors based on their experimental results [13]. All reported values of thermal 

conductivity of SiC were found to degrade significantly at a very low exposure of 0.001 

dpa. One point of particular interest is the increase of room temperature thermal 
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conductivity at the non-saturatable regime, where the irradiation-induced void swelling 

again dominates the microstructure evolution. Unlike the behavior at the saturatable 

regime, void-swelling at high-temperature regime does not contribute to the reduction but 

to the increase of thermal conductivity. Therefore, it is difficult to model the thermal 

behavior of SiC outside of the saturated regime accurately. 

 

Figure 3.2 Thermal conductivity degradation of CVD SiC due to neutron 

irradiation at room temperature [13] 

 

Figure 3.3 Thermal conductivity of SiC at room temperature in the void-swelling 

saturable and non-saturable regime [27] 
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In Carpenter’s thermal conductivity modeling, the term d0 serves as the effective 

dpa for k(T) > ksat ,the thermal conductivity after reaching dsat, which is the saturation 

dose. From the measurements by Snead and Bourgoin on fully amorphous SiC, it is 

observed that the thermal conductivity saturates at 1 dpa at 3.6 W/m-K regardless of the 

temperature [27, 28]. 

       [
    

    
]
   

                                          (3.2) 

 The thermal conductivity of Zircaloy in FRAPCON is only modeled as a function 

of temperature, which increases slightly with temperature. However, the thermal 

conductivity of SiC is modeled as a function of both temperature and dose: 

             [
      

    
]
    

                                     (3.3) 

 The thermal conductivity of SiC at a given temperature and dose can be modeled 

by applying Eq. 3.3. Thermal conductivity soon becomes a weak function of temperature 

with increasing dose and saturates after reaching the saturation dose. It is plotted as a 

function of temperature in Fig. 3.4 to compare with Zircaloy, and also as a function of 

dose to show the significant degradation at the BOL.  
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Figure 3.4 Thermal conductivity of un-irradiated SiC and Zircaloy vs. temperature 

 

Figure 3.5 Thermal conductivity of irradiated SiC at room temperature 

3.1.2 Thermal Expansion 

 Thermal expansion of the cladding and fuel is responsible for the significant 

change in pellet-clad gap size at BOL due to the difference in thermal expansion 

coefficient. During operation, the cladding and fuel temperature does not vary 
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significantly during normal operation, so the difference in cladding/fuel deformation 

from thermal expansion is small. The fuel-cladding gap width controls the thermal 

resistance of the heat flow from the fuel to the cladding, and hence significantly affects 

the overall fuel rod temperature. 

 The interatomic distance between Si-Si and Si-C atoms in SiC lattice is a function 

of temperature. The rise of temperature increases the total energy of atoms, causing 

atoms to vibrate and move slightly apart from their original lattice position. This 

microscopic effect results in a macroscopic effect of thermal expansion. In the strong 

covalent bonding of SiC, the vibration and dimensional changes are small, and results a 

low thermal expansion coefficient with weak temperature dependency compared to 

Zircaloy. 

 The thermal expansion coefficient for SiC has been reported over a wide 

temperature range shown in Fig. 3.6. Eq. 3.4 is valid over the temperature range from 

125~1273K. For temperature above 1273K, the thermal expansion coefficient is modeled 

as a constant, which can be shown in Fig. 3.7. 

                                                                  g                                                                                                                                                                                                                                                                 

125 K < T < 1273 K                                                             (3.4)                       

                  T > 1273 K                                              (3.5)                                                                                   
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Figure 3.6 Thermal expansion coefficient of SiC vs. temperature [13] 

 
Figure 3.7 Thermal expansion coefficients vs. temperature: SiC & Zircaloy 
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 The only report on the effect of neutron irradiation on thermal expansion 

coefficient was found in Price’s result [29]. The report indicated no significant change in 

thermal expansion coefficient after irradiation; therefore, the current model neglects the 

irradiation effect to thermal expansion.  

3.1.3 SiC Irradiation Swelling 

SiC cladding irradiated by neutrons undergoes volumetric swelling. It plays an 

important role in determining the gap width and also to the volume between the 

top/bottom of fuel rods. Swelling, thermal expansion, elastic deformation of the cladding 

together with the fuel deformation will determine the gap width, and ultimately the time 

for pellet cladding mechanical interaction.   

Recent SiC swelling model by Huang et al. [30] attributes the linear temperature 

dependence of swelling saturation to the formation and growth of small interstitial 

clusters from collision cascades initiated by neutron bombardments.  These irradiation-

induced interstitial clusters grow with elevated temperature and absorb mobile carbon 

interstitials. However, the cascade recombination events at higher temperature decrease 

the density of clusters sharply. Overall, SiC swelling follows linear dependency with 

temperature, and saturates at a fast neutron fluence of approximately 10
25

 n/m
2
 at 

temperature below 1273 K. 

Based on the experimental data provided by Snead et al.[31], the swelling of SiC 

reaches 95% of its saturated value after 1 DPA. In the current model, it is assumed that 

the swelling contributes equally in the plane and through the thickness of the monolithic 

layer, which equates to a maximum of 0.67% linear strain. For temperature below 1273 

K, the linear strain is modeled using Eq. 3.6, as shown in Fig. 3.8. 
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                                                             (3.6) 

 

Figure 3.8 Linear irradiation-induced swelling strain of SiC below 1273 K vs. DPA 

3.1.4 Elastic Modulus 

 The elastic modulus describes a material’s dimensional response due to tensile or 

compressive force in the elastic deformation regime. This modulus can be obtained by 

plotting the stress vs. strain curve for an isotropic sample. The linear relationship of the 

curve indicates the elastic region and its slope is the elastic modulus. 

 Dense structure of CVD SiC usually exhibits the highest elastic modulus. Differ 

in manufacturing, the as-fabricated porosity and impurity concentration strongly affects 

the elastic modulus [32, 33]. Unlike thermal properties, neither grain size nor crystal 

structure have a significant effect on the modulus of SiC. The effect of porosity on the 

elastic modulus at room temperature is presented in Fig. 3.9. The elastic modulus, E, at 

room temperature can be expressed as below: 

       (    )                                                  (3.7) 
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where 

   = 460 GPA (elastic modulus of the pore-free CVD SiC) 

 C = 3.57 

Vp = porosity % 

 

Fig. 3.9 Porosity effect vs. SiC elastic modulus [13] 

 

Figure 3.10 Modeling of SiC elastic modulus as a function of porosity  
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The elastic modulus of SiC has been reported to decrease with elevated 

temperature and irradiation-induced swelling, shown in Fig. 3.11 and 3.12. Higher 

temperature softens the residual silicon, causing re-distribution of silicon which may 

degrade the elastic modulus. Another mechanism responsible is the grain boundary 

relaxation, which can aggravate the degradation of elastic modulus by increasing the 

intergranular porosity [34]. The elastic modulus as a function of temperatures can be 

expressed as: 

          ( 
  

 
)                                                    (3.8) 

where 

   = 460 GPa 

B = 0.04 GPa/K 

   = 962 K 

 Lattice expansion/relaxation of SiC induced by irradiation is the major cause for 

the elastic modulus reduction, as the elastic modulus decrease with the point-defect 

swelling of SiC. Irradiation-induced swelling is an isotropic volumetric expansion that 

causes lattice relaxation because the accumulated point defects and clusters are not 

mobile during the irradiated temperature. Little is known for elastic modulus degradation 

beyond the saturation regime. However, the defects responsible for swelling in this 

regime are mainly voids and other relative larger defects that have a minor effect on 

elastic modulus as compared to point defects. An estimation of swelling on elastic 

modulus was based on using the Tersoff potential [35]. It predicted a linear lattice 

swelling of 1% will cause approximately 10% reduction in elastic modulus. Due to low-
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swelling in LWR condition, and highly-scattered data, the degradation of elastic modulus 

by irradiation is not being modeled.  

 

Figure 3.11 Temperature effect vs. SiC relative elastic modulus [13] 

 

Figure 3.12 Irradiation-induced swelling vs. elastic modulus reduction of CVD SiC. Dot 

line is the effect of lattice relaxation on elastic modulus using Tersoff potential [13] 
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Figure 3.1.13 Elastic modulus degradation of 5% porosity SiC/Zircaloy vs. temperature  

3.1.5 Flexural Strength 

 Flexural strength is the mechanical parameter of a brittle material that determines 

the ability to resist deformation under load, usually measured by the transverse bending 

test. Maximum flexural strength represents the highest stress experienced of the material 

at the moment of rupture.  

 The flexural strength of CVD SiC is shown in Fig. 3.15, as a function of dose 

[36]. It undergoes a modest increase by irradiation, and quickly saturates at 1 dpa. While 

the increase in flexural strength is significant, the temperature effect is obscure. From 

Fig. 3.16, flexural strength for CVD SiC increases at doses less than 10 dpa. However, 

for doses larger than 10 dpa, the effect of irradiation on flexural strength remains unclear. 

Mechanical testing by Ross et al. [9] reports a wide range of maximum flexural strength 

of monolithic SiC tube which is shown in Fig. 3.14, where the maximum flexural 
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strength range from 263 to 551 MPa, depending on the providing vendor. It is interesting 

that in all their tests, the monolithic SiC tubes fail at 0.2% strain in a brittle fashion.  

 

Figure 3.14 Maximum flexural strength of monolithic SiC tube of two vendors [9]  

 

Figure 3.15 Flexural strength increase as a function of dpa  
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Figure 3.16 Flexural strength of CVD SiC vs. dpa: normalized to un-irradiated strength  

 FRAPCON-USC does not calculate for SiC cladding’s maximum flexural 

strength for determination of cladding failure. For conservative estimation, the maximum 

flexural strength for failure analysis of monolithic SiC cladding will adapts the lower 

strength of 263 MPa.  

3.1.5 Poisson’s Ratio 

. Poisson’s ratio describes the deformation of material perpendicular to the 

direction of stress. The Poisson’s ratio of SiC depends mostly on its stoichiometry, 

crystallinity, impurity level, and porosity. High-purity CVD SiC exhibits the highest 

Poisson’s ratio of 0.21. Unlike other properties, the temperature and burnup effect is very 

insignificant. Therefore, it is modeled as a constant value of 0.21 over the burnup range 

in current FRAPCON-USC [13].  
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3.1.6 Shear Modulus 

The shear modulus describes a material’s response to shear stress, and is 

expressed as a function of the elastic modulus and the Poisson’s ratio. The shear modulus 

at room temperature after correcting for porosity is about 195 GPa. Possessing the same 

trend as elastic modulus, the shear modulus of SiC also decreases with increasing 

temperature. The shear modulus is modeled using Eq. 3.9, as an isotropic material: 

  
 

      
                                                   (3.9)  

where 

E = elastic modulus 

  = 0.21 (Poisson’s ratio) 

3.1.7 Hardness 

 SiC possess extremely high hardness due to its strong covalent bonding. It is 

generally dependent on the fabrication method, composition, and impurity levels. 

Ryshkevitch [37] reports the effect of porosity on the hardness of several oxide materials, 

which the relationship can be expressed by Eq. 3.10. Hardness is one of the parameters 

used in the calculation for the fuel-cladding conductance once hard-contact occurs. As 

the contact pressure increases, the point of contact will enlarge because of the localized 

plastic deformation, and therefore improves the thermal conductance. 

          (      )                                                    (3.10) 

where 

   = Vicker’s hardness (GPa) 

   = porosity (%) 
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Figure 3.17 Effect of porosity vs. SiC hardness 

Fig. 3.18 shows the Vickers hardness for SiC with different porosity at elevated 

temperatures. It can be categorized into two temperature regimes: athermal and 

thermally-dependent regime. The hardness of SiC stays constant at lower temperature and 

will decrease rapidly after passing the ductile-to-brittle temperature (DBTT). It is also 

interesting to note that DBTT increases slightly with porosity.  

 

Figure 3.18 Temperature effect on SiC hardness [13] 
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3.2 Other SiC Properties 

3.2.1 Plastic Deformation 

 Monolithic SiC is assumed to be a perfect elastic solid that will fail immediately 

in a brittle manner upon reaching yield strength. All plastic deformations are prohibited 

in this modeling using FRAPCON-USC. 

 3.2.2 Creep 

 Creep of SiC under elevated temperature and neutron irradiation is categorized 

into two parts: the thermal-induced creep and the irradiation-induced creep. Each regime 

is individually discussed and evaluated for its significance under the modeling condition.  

(a) Thermal-Induced Creep: 

The thermal-induced creep has been observed only at very high temperatures 

(above 1673 K) for high-purity, polycrystalline β-SiC [34, 38], from experiments by 

DiCarlo [39]. Experimental data for the steady-state creep rate of SiC were reported by 

Gulden [34], and Carter et al. [38] were not consistent with each other, mainly because of 

the different material quality and the loaded crystallographic direction. A general power-

law steady-state creep rate equation is obtained from experimental data:   

 ̇    (
 

 
)
 
   (

  

   
)                                         (3.11) 

where 

   =      , n is the stress exponent 2.3, Q is the activation energy 174 kJ/mol,   is the 

applied stress (MPa), G is the shear modulus (GPa),    is the gas constant 8.314 J/mol-K, 

and T is the temperature in Kelvin.  
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(b) Irradiation-Induced Creep 

The role of irradiation is to induce creep at a temperature where thermal creep is 

negligible, usually below 0.5 Tm for most materials. In metals, the irradiation-induced 

creep is proportional to the applied stress, neutron flux, and the creep compliance [40]. 

First results published for the irradiation-induced creep of SiC was by Price [41]. A 

linear-averaged steady-state creep compliance of 2 x 10
-6

 (MPa-dpa)
-1 

is used for doses at 

0.6~0.7 dpa at all temperature. A conversion rate from displacement per atom to neutron 

flux is also used for irradiation-induced creep modeling [42]: 

           
 

                                                     (3.12) 

The irradiation-induced steady-state creep can be plotted as a function of applied stress 

(MPa), neutron flux (n/cm
2
s), and creep compliance: 

 ̇                                                               (3.13) 

(c) Comparison Between SiC and Zircaloy Creep 

The thermal and irradiation-induced steady-state creep rate of Zircaloy can be 

calculated using material propertes from MATPRO [18] using cladding average 

temperature, neutron flux, and effective stress. Steady-state creep rate for both cladding 

type were modeled as a function of effective stress under typical LWR condition, 

assumed cladding average temperature of 600 K, and fast neutron flux of 2.21 x 10
16

 

n/m
2
s (test case 1 used in Chapter 4). A comparison of modeled cladding steady-state 

creep rate for both materials is shown in Fig. 3.19.  
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Figure 3.19 Thermal/irradiation induced steady-state creep rate vs. effective 

stress at 600K 

 

Figure 3.20 Total steady-state creep rate vs. effective stress at 600 K  
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From Fig. 3.20, the total steady-state creep rate of SiC is at least 5 orders of 

magnitude lower than the steady-state creep rate of Zircaloy. According to this result, the 

steady-state creep of SiC is neglected in thr current FRAPCON-USC modeling under 

LWR condition. 

3.2.3 Oxidation 

The data for the oxidation behavior of SiC in LWR environment is limited. The 

oxidation kinetics of SiC is very complex, which depends on the atmosphere, oxygen 

partial pressures, temperatures, and SiC microstructures. It is not known whether 

exposure to coolant will result in the formation of a protective oxide layer on the surface 

of the SiC cladding as with Zircaloy, which leads to weight gain and reduced thermal 

conductivity. There may also be a corrosive effect that results in a weight loss, thinning 

of the cladding or increase in porosity. In light of insufficient data and the complexity of 

oxidation behavior, the oxidation rate is set to zero in FRAPCON-USC modeling. 

3.2.4 Emissivity 

Emissivity is the fraction of thermal radiation emitted by the surface of a body 

relative to a blackbody. The closer to unity, the better the surface is at emitting/absorbing 

thermal radiation. The emissivity can be changed through applications of different 

surface coating and changing the surface roughness. A value of 0.8 is used for SiC 

composite by Carpenter [16]. Due to lack of emissivity data for CVD SiC, 0.8 is also 

used in the FRAPCON-USC modeling.   
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3.2.5 Phase Transition 

 SiC exists in two crystalline structures, α and β phase. Only the β phase is found 

at temperature below 2300 K, and possesses high-purity microstructure. SiC will starts to 

decompose at 2600 K, atmospheric pressure. This is well above the temperature range of 

interest for LWR cladding. Therefore, the phase change of SiC is not modeled in 

FRAPCON-USC. 

3.2.6 Crud Accumulation 

 When coolant flows through the core, corrosion products from other components 

that are suspended in the water will began to accumulate on the cladding surface. This 

accumulation is modeled as either a constant or a growing layer on top of the oxide layer. 

It will have to be determined experimentally for the monolithic SiC cladding’s affinity 

for accumulating the deposits based on material and surface texture. In current modeling, 

the rate of crud accumulation and thermal resistance is set equal to that of Zircaloy 

cladding. 

3.3 Pellet-Cladding Mechanical Interactions 

The deformation of both pellet and cladding will determine the status of pellet-

cladding gap. Gap width determines the gap conductance, hence the temperature 

distribution in pellet and cladding. The thermal and mechanical analyses are equally 

important and should be closely coupled. Theoretically, both analyses should be solved 

simultaneously, but FRAPCON solves them separately and provides coupling through an 

iterative scheme. At the end of each analysis, either a new open-gap size or a closed gap 

with pellet-cladding interfacial pressure is obtained.  
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An intermediate “soft-contact” regime exists before true PCMI (hard-contact) 

occurs. This process will be discussed in more detail in the fuel cracking/relocation 

section. After the partial recovery of pellet cracks, fuel swelling starts to dominate the 

stress/strain calculations of the fuel rod (soft pellet model), which usually accumulates a 

large interfacial pressure, Pint, between pellet surface and cladding. Fig. 3.21 shows the 

evolution of fuel and gap width at various regimes.    

 

Figure 3.21 Cross-sectional view of the pellet evolution during operation 

3.3.1 Fuel Cracking and Relocation Modeling 

 Fuel relocation phenomenon was drawn to attention when the measured fuel 

pellet centerline temperature at BOL was found to be lower than the value predicted by 

fuel performance code which predicts the fuel-clad gap based on only the fuel and 

cladding thermal expansion [43]. It is later observed that pellets crack at startup due to 

the thermal stresses induced by the thermal expansion differences at the hot pellet center 

and cold periphery.  

 The maximum thermal stress, σt, max, at pellet periphery in an un-cracked pellet 

submitted to a parabolic temperature gradient must be compared with the fracture stress 

of UO2, which is approximately 130 MPa. Consider UO2 material properties, radial 

cracks are assume to initiate in the pellet periphery at a low linear heat rate of 5 kW/m. 

Oguma [44] proposed a linear model of crack numbers vs. linear heat rate as illustrated in 
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Fig. 3.22. The consequences of cracking are very important in fuel performance 

modeling. Because of the larger thermal expansion of the fragments and the vibration 

induce the cracked pellet fragments to move outward. This phenomenon is called fuel 

“relocation” and has a strong impact on the fuel temperature as shown in Fig. 3.23. These 

new crack volumes within the pellet are compensated by a reduction in gap volume. This 

gap reduction, or alternatively, can be interpreted as increase in pellet diameter due to 

pellet cracking. Gap change during irradiation is a major factor influencing fuel rod 

performance including fuel temperature, fission gas release, and initiation of PCMI.  

 

Figure 3.22 Calculated crack patterns from thermal-induced stress [44] 

 

Figure 3.23 Fuel radial temperature distribution at BOL with/without relocation [45]  
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 The change of gap size with irradiation is measured experimentally in order to 

calculate the relocation strain [46]. Results in instrumented fuel rods, as shown in Fig. 

3.24, indicates that 40±20% of the initial gap is eliminated during the first heat-up to full 

power. The change in gap volume in FRAPCON is modeled as a function of linear heat 

generation rate and burnup shown in Fig. 3.25. The overall relocation strain is calculated 

using Eq. 14.  

            
   

  

 

          
                                            (3.14) 

Where 

Gc = cold gap width 

Rf, cold = cold-pellet radius 

 

Figure 3.24 Experimental data of the % of gap closure under irradiation [46] 
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Figure 3.25 FRAPCON modeled gap change 
  

 
 as a function of power and burnup [3] 

3.3.2 Gap Width Model: Considering Fuel Deformation  

 Oguma’s pellet crack and relocation model introduces a gap model with different 

PCMI regions and a critical void ratio for determination of the hard-contact PCMI 

condition [44]. The gap model is divided into four regions, and is discussed individually 

as shown in Fig. 3.26. 

Region I 

 Both cladding and fuel deformations contribute to the change in gap width at this 

region. The thermal expansion differences between pellet and cladding, fuel 

swelling/densification, and the creep of fuel and cladding are all considered in the 

calculation of gap width. For the case of SiC-clad fuel, the decrease in gap width is 

slower due of the negligible cladding creep. 
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 Region II 

 The gap decreases abruptly due to pellet cracking and the subsequent pellet 

jumping. The phenomenon of pellet jump, which occurs after pellet cracking, is a 

phenomenon that relates to the fuel’s material properties (fracture strength, elastic 

modulus, and thermal conductivity) of the fuel. It results in a rapid decrease in the gap 

size. In typical BWR fuel rods, the UO2 fuel pellet cracks at a rod power of 6~9 kW/m 

and a subsequent gap decrease of 40~60 μm during the early rise of power. 

Region III 

 From the end of the pellet jump until the onset of hard PCMI, this region is 

termed as the “soft contact” region. At first, fuel fragments and cladding are only in 

contact with cladding at a few points. As power increases, pellet diameter increases due 

to additional thermal expansion and swelling, accommodating some of the void spaces. 

However, there are also spaces within the rod where the pellet fragments can relocate 

under a weak constraint from the cladding. Hard-contact will not occur until fuel 

fragments have filled up a certain volume of the void spaces. A critical void ratio β is 

used to determine the point of hard contact. 

  
  

  
 (unitless)                                      (3.15) 

   = cladding inner diameter (mm) 

G = effective gap (μm) 

Region IV 

 Hard-contact will be initiated when the critical void ratio is achieved by the 

accommodation of the void spaces by fuel fragment swelling and thermal expansion. The 
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cracked fragments once again return to a rigid body and initiates hard-contact. This 

concept is based on the assumption that hard-contact occurs due to a loss of 

compressibility in the cracked pellets. The compressibility arises from a reduction of the 

void space in which pellet fragments are movable.  

 

Figure 3.26 Gap model showing the relationship between gap width and rod power 

3.3.3 Modeling of elastic modulus recovery in FEMAXI  

 FEMAXI models fuel relocation using the concept of pellet elastic modulus 

recovery [47]. When a pellet is subjected to a tensile thermal stress due to thermal 

expansion, it is assumed that cracks are generated and the elastic modulus is decreased to 

approximately 1/100 of its original value. When the pellet is in a compressive stress due 

to PCMI, it is assumed that the elasticity of pellet will gradually recovers with the 

decreasing relocation strain. In Fig. 3.27, Ec is the reduced elastic modulus of cracked 

pellets, ɛe is the tensile strain due to elastic compression, and ɛrel is the recovered 

relocated strain. 
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 When the pellet is not in contact with the cladding, thermal stress in the pellet is 

mostly relieved by the production of cracks. The pellet can expand without constraint and 

the gap is narrowed. However, when the pellet is in contact with the cladding, 

compressive strain inside the pellet will increases due to the cladding restraint. Void 

space generated by relocation is then compressed, and the pellet stiffness increases. This 

can be modeled by increasing the elastic modulus linearly with relocation strain recovery. 

This is the process where a mechanical interaction is gradually increased between a 

cracked/relocated pellet and the cladding. Elasticity of a pellet completely recovers to its 

original value when pieces of the cracked pellet are compressed by cladding and 

therefore fill the void spaces. A strong interaction between pellet and cladding is then 

assumed. 

 

Figure 3.27 Stiffness recovery model of pellet with cracks [47]  

3.3.4 Implementation of Fuel Creep 

 The gap width,      (μm), with the burnup effect included can be expressed as 

following equation: 
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                                      (3.16) 

where 

A = P-60 (W/cm), P = linear heat generation rate 

B = burnup (GWD/MTU) 

  
  =           , G0 is the initial gap (μm),  

    = 3.6ΔD (μm) pellet jump distance, ΔD = pellet diameter change due to thermal 

expansion 

K = diametral change of pellet caused by swelling, densification, and creep 

   = 0.0039 

   = 1.41 

   = 0.95 

 Implement fuel creep into the term K will decrease   
  and also the overall gap 

width. The creep behavior of UO2 will be discussed in greater detail in Chapter 4. Elastic 

deformation of pellet is not considered because the pressure exerted on the fuel pellet 

from the gap gas pressure is considered as a hydrostatic force. Once true PCMI occurs, a 

pressure of much larger magnitude, hence called “interfacial pressure” is created by the 

cladding constraint. This significance of interfacial pressure will then determine the 

magnitude of the elastic deformation of fuel pellet. 

3.4 Soft Pellet Model  

 FRAPCON calculates the total radial and axial change of the fuel by considering 

thermal expansion, swelling, and densification. Relocation is only included in the thermal 

response to model the temperature profile more accurately. No hard contact between the 
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fuel and cladding is allowed until other fuel expansion components recover 50% of the 

relocation strain in the mechanical analysis. FRAPCON’s mechanical model, FRACAS-I 

assumes that no pellet deformation is induced by fuel-cladding interfacial pressure; 

therefore it is also called the rigid pellet model. Additional pellet deformations are 

evaluated to provide an understanding of the significance of pellet deformations due to 

the large interfacial pressure during hard-contact. 

3.4.1 UO2 Elastic Modulus 

 All stress-induced deformations of the fuel are neglected in current FRAPCON, 

because of the high elastic modulus of the ceramic UO2 fuel and insignificant interfacial 

pressure created when using the ductile metallic (lower elastic modulus and capable of 

creep) Zircaloy cladding. Using a stiff ceramic cladding such as SiC, it can only relieve 

excessive stresses through minor elastic deformation, will result a much larger interfacial 

pressure at the pellet surface. The elastic modulus of UO2 can be expressed as a function 

of porosity and temperature shown in Fig. 3.28 [46].      

                                                                    

where 

T = average temperature of the fuel 

  = as-fabricated porosity of fuel 
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Figure 3.28 Elastic modulus of UO2 as a function of temperature 

3.4.2 Implementation of the soft-pellet model 

 An approach to consider the effect of pellet deformation to the interfacial pressure 

in developed in this research. The solution scheme of the soft-pellet model contains four 

steps: (1) pellet elastic deformation due to the feedback of interfacial pressure (2) apply 

the modified radial and axial deformations of pellet to meet the closed-gap criterion for 

radial/axial continuity (3) calculates new cladding radial/axial deformation based on the 

closed-gap criterion (4) obtain new cladding hoop stress and interfacial pressure. A 

schematic showing the solution scheme for the soft-pellet model is given in Fig. 3.31. 

(a) Stress-strain calculations during closed gap 

 During closed-gap, the elastic stress-strain calculations of cladding can be 

calculated using a sequence of Hooke’s equation. The radial stress is neglected because 

the cladding is assumed to be a thin-walled cylindrical shell. However, radial strain still 
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needs to be considered because of the Poisson’s effect. The stress/strain equations are 

listed below: 

                 
             

 
                                             (3.18) 

                 
  
        

     

 
                                            (3.19) 

Pext = external coolant pressure 

Pint = interfacial pressure 

ro, ri = cladding outer/inner radius 

t = cladding thickness 

                
 

 
                                                    (3.20) 

                 
 

 
                                                    (3.21) 

                  
  

 
                                                 (3.22) 

And the displacement of cladding can be obtained 

                                 ̃   
 

 
                         (3.23) 

                                 ̃   
 

 
                           (3.24) 

                                                                        (3.25) 

 

Figure 3.29 Cladding at closed-gap  
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(b) Closed-gap criterion 

 Closed-gap criterion in both radial and axial direction must be satisfied to 

maintain the closed-gap status. In the radial direction, the pellet outer surface 

displacement and cladding inner surface displacement must be equal to satisfy the closed-

gap criterion. In the axial direction, any additional strain from the pellet is transferred 

entirely to the cladding. Therefore, cladding deformation is totally dominated by the 

pellet deformation model during closed-gap. 

                                                                     (3.26) 

    = fuel pellet outer radial displacement 

    = cladding inner surface radial displacement 

  
      

    
       

    
  

    

    
                                            (3.27) 

 
    
     ,  

    

    
 are the axial strains at contact 

(c) Pellet-cladding interfacial pressure 

 After the cladding radial displacement and axial strain are determined by the 

closed-gap criterion, they are used in a thin cylindrical shell with prescribed external 

pressure from coolant to determine the pellet/clad interfacial pressure 

   
 [             ̃ ]

  ̃          ̃  
                                               (3.28) 

   
 [    ̃            ]

  ̃          ̃  
                                                    (3.29) 

where  

E = elastic modulus of cladding 

ν = Poisson’s ratio  
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 ̃  
     

 
 

Finally, the interfacial pressure can be expressed as: 

     
        

  
                                                        (3.30) 

Po = external coolant pressure 

(d) Pellet elastic deformations 

 When the fuel and cladding are in hard-contact, the elastic deformation of the fuel 

pellet is introduced to the total fuel deformation model by considering the effect of the 

fuel-cladding interfacial pressure, Pint. The radial stress at the pellet periphery is 

determined directly from the interfacial pressure, while the pellet axial stress is 

determined by the surrounding plenum gas pressure.  

                                                                   (3.31) 

                                                                    (3.32) 

Pg = plenum gas pressure 

    
 

  
(         )                                                (3.33) 

    
 

  
(         )                                                (3.34) 

Ef,     = elastic modulus and Poisson’s ratio of the fuel 

Fuel radial displacement 

                                                                  (3.35) 
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Figure 3.30 Interfacial pressure exerted on pellet at closed-gap  

 

Figure 3.31 Flow chart of the soft-pellet model solution scheme  

3.4.3 Fuel Creep  

 Beside the dominating thermally-induced creep of UO2 above 1200 °C, an 

irradiation-induced creep also needs to be considered at temperature below 1200 °C [46]. 

This steady-state strain rate was reported to be dependent on the fission rate and stress. 

The strain rate equation can be expressed by Eq. 37 [48]. The in-reactor creep behavior of 

UO2 comprises of an (a) high-temperature regime which the normal thermal-induced 

creep is enhanced by irradiation, and (b) a low-temperature regime where the fission 

process induces athermal creep.  
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 ̇                  (
  

  
)              (

   

  
)                    (3.36) 

where 

     
                  

       
   

      
                   

       
  

Q = 552.3 kJ/mol 

Q1 = 376.6 kJ/mol 

C = 7 x 10
-23

  

G = 10 μm (grain size) 

  = use % TD if above 92%, otherwise use 92% 

R = 8.314 J/mol-K (universal gas constant)  

 

Figure 3.32 Creep of UO2 vs. temperature (stress of 24 N/mm
2 

 and 

fission rate of 1.2 x 10
13

 fission/cm
3
s) 
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 It is found in Fig. 3.32 that the temperature between 1200 and 500 °C, the in-

reactor creep is always greater than the out-of-reactor creep, and it is always temperature 

dependent. Below 500 °C the creep rate is athermal. These two regions are called the 

irradiation-enhanced thermal creep and the irradiation-induced creep [49].   

 Hard-contact between fuel and cladding creates large interfacial pressure which 

then accelerates the steady-state creep rate; however, pellet fragments can only creep 

down if there are any remaining spaces. Creep rate reduces the overall swelling rate, and 

ultimately results a longer soft-contact regime and a lower interfacial pressure. Creep will 

continue to have an effect until all void spaces have been consumed. 

  ̇       ̇                                                      (3.37) 

 The stress exerted on the fuel pellet surfaces increases due to hard-contact, and 

the fuel creep rate will achieve the swelling rate eventually. The critical stress, σc, can be 

determined from the corresponding interfacial pressure. The overall effects of irradiation-

induced creep on PCMI are the extended soft-contact and reduced buildup of interfacial 

pressure which is predicted in Fig. 3.33.   

 

Figure 3.33 Interfacial pressure vs. burnup plot of the rigid-pellet and soft-pellet model 
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CHAPTER IV 

RESULTS AND DISCUSSION 

4.1 Low Burnup Test Case 

 With the implementation of SiC properties, the modified FRAPCON-3.4, hence 

called FRAPCON-USC, is now capable of predicting the performance of the monolithic 

SiC-clad fuel rods. Two test cases with different power histories were selected to predict 

the fuel behavior. Constant power low-burnup test case removes the disruption due to 

sudden power level change and the extreme effects of large fission gas release due to 

higher burnup. It can reveal the possible advantages and concerns of applying SiC-clad 

fuels in current operating condition. The high-burnup test case provides insight into the 

fuel rod behavior in the operations where the monolithic SiC-clad fuel is needed to 

exceed the performance of the conventional Zircaloy-clad fuel.    

 The design parameters are the same for both SiC and Zircaloy fuel rods, as 

indicated in Table 4..1. These dimensions represent a typical 17x17 assembly PWR 

design, which is a more practical case for modeling fuel performance under LWR 

condition.    
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Table 4.1.1 Initial fuel and cladding dimensions for both cladding design  

 

4.1.1 Constant power analysis:  

 Case 1 is a PWR test case with power history of a constant LHGR of 16.4 kW/m 

as shown in Fig. 4.1. The fuel rod is discharged at a burnup of 56 GWD/MTU after 1500 

days as shown in Fig. 4.2. The first major difference between the SiC and Zircaloy 

cladding is the thermal conductivity. Plotted in Fig. 4.3, the thermal conductivity of SiC 

degrades significantly from 117 W/m-K at BOL to a saturated value of 3.6 W/m-K after 1 

dpa due to the accumulation of the irradiation-induced defects. Since the cladding 

temperature does not fluctuate largely during operation, as the thermal conductivity of 

Zircaloy stays close to 16 W/m-K. At discharge, the thermal conductivity of SiC is less 

than Zircaloy by a factor of 4.6.     
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Figure 4.1 Linear heat generation rate vs. time 

 

Figure 4.2 Average burnup vs. time 
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Figure 4.3 Cladding thermal conductivity degradation vs. burnup   

4.1.2 Fuel/Cladding temperature 

 The drawback of lower thermal conductivity is the larger temperature drop across 

the cladding, and therefore increases the average temperature of the fuel as shown in Fig. 

4.4 and 4.5. The inner cladding temperature of SiC is hotter than Zircaloy by 60 K at 

EOL, while the fuel centerline and surface temperatures of SiC are around 80 K hotter 

than the value for Zircaloy.  
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Figure 4.4 Cladding inner/outer surface temperature vs. burnup 

 

Figure 4.5 Fuel centerline/surface temperature vs. burnup 

580

600

620

640

660

680

700

0 10 20 30 40 50 60

Te
m

p
e

ra
tu

re
 (

K
) 

Burnup (GWD/MTU) 

Cladding Temperature 

SiC Inner Zircaloy Inner SiC Outer Zircaloy Outer

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60

Te
m

p
e

ra
tu

re
 (

K
) 

Burnup (GWD/MTU) 

Fuel Temperature 

SiC Centerline Zircaloy Centerline

SiC Surface Zircaloy Surface



www.manaraa.com

65 

 

 

Figure 4.6 Gap gas pressure vs. burnup 

4.1.3 Pellet-cladding gap width 

 The pellet-cladding gap width increases initially due to the densification of the 

fuel pellet shown in Fig. 4.7. After the as-fabricated pellet porosity is consumed, fuel 

swelling will start to serve as the dominating mechanism for fuel expansion. In addition, 

Zircaloy cladding begins to creep inward to the fuel achieving soft-contact with the pellet 

at 18.65 GWD/MTU, and eventually reaching hard-contact at 26.1 GWD/MTU. 

However, for SiC cladding with neglible creep, soft-contact occur at a much higher 

burnup of 41 GWD/MTU, and no hard-contact was observed. The gap width of SiC-clad 

fuel rods is only determined by fuel swelling, thermal expansion, and cladding 

deformation cause by the coolant/gap pressure difference. 
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Figure 4.7 Gap width & interfacial pressure vs. burnup 

4.1.4 Interfacial pressure 

 The buildup of interfacial pressure at the interface between pellet and cladding is 

observed at a low burnup of 26.1 GWD/MTU for Zircaloy fuel rods. Initially, the 
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the closure of some cracks. This is called the soft-contact regime, and only after this 
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necessarily unacceptable if the cladding is able to relieve the excessive accumulated 

stresses by creep and plastic deformations. As a result, high interfacial pressure will 

increase the cladding hoop stress, and leads to the transition of cladding state from 

compressive to tensile. The cladding is initially at a compressive state before contact 

because the gap gas pressure, shown in Fig. 4.6, is much lower than that of the external 

coolant. However, the buildup of interfacial pressure along with a minor contribution of 

fission gas release will decrease the magnitude of compressive cladding hoop stress as 

shown in Fig. 4.8. Beyond burnup of 28 GWD/MTU, the cladding will be in a tensile 

state that is favorable for stress-corrosion cracking. 

 Fig 4.9 shows the hoop strain of both claddings. The transition from compressive 

to tensile strain occurs again at the moment of hard-contact. The overall insignificant 

hoop strain of SiC cladding is a result of its high elastic modulus and a lower hoop stress 

(30 MPa in compression at EOL).   

 

Figure 4.8 Cladding hoop stress vs. burnup 
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Figure 4.9 Cladding hoop strain vs. burnup 
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pressure will deform the UO2 pellet elastically and serve as one of the sources for fuel 

creep (with irradiation and temperature). Since only 50% of the relocation strain is 

recovered at the soft-contact regime, it is assumed that the pellet can still deform inwards 

at the hard-contact regime due to the remaining 50% void spaces.   

 In this analysis, the elastic deformation and the thermal/irradiation-induced creep 

of the UO2 fuel are calculated using the corresponding UO2 material properties under 

current operating condition. Their effect is later considered in the fuel deformation 

model.   

 

Figure 4.10 Fuel surface pressure vs. burnup 
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Figure 4.11 Fuel pellet elastic deformation due to fuel surface pressure 
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surface pressure. However, if the interfacial pressure, fuel temperature, or neutron flux 

are higher, the inward creep rate may be significant and therefore retard the swelling rate 

to some degree.  

 

Figure 4.12 UO2 steady-state creep rate vs. 1/T  

 

Figure 4.13 Fuel swelling rate using rigid and soft pellet model vs. burnup 
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4.1.7 Fuel radial displacement using soft-pellet model  

 The fuel pellet radial displacement using the soft-pellet model is calculated and 

compared with the result of rigid-pellet model, as shown in Fig. 4.14. The radial 

displacement difference between the two models is insignificant, with merely a 1.5 μm 

difference at EOL. This small value is due to the lower fuel surface pressure and the 

negligible thermal-induced creep.    

 

Figure 4.14 Fuel radial displacement using rigid and soft pellet model vs. burnup 
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interfacial pressure can be calculated using Eq. 4.1 and 4.2, where the thermally-induced 

terms are neglected due to their insignificant value. The irradiation-induced creep is 

comprised of three factors: creep compliance B, applied stress σ, and the neutron flux F. 

Creep compliance for UO2 pellet is an experimental value reported by Solomon and 

Brucklacher [50, 51], the neutron flux is set as a constant in the FRAPCON modeling, 

therefore, the only variable for the irradiation-induced creep is the applied stress resulting 

from interfacial pressure.   

  ̇       ̇                                                  (4.1) 

  ̇                                                         (4.2) 

where 

B = 3.79 x 10
-24

 (creep compliance, no unit) 

  = applied stress on the fuel surface, coming from the interfacial pressure (MPa) 

F = neutron flux (n/cm
2
s) 

 Provided a constant neutron flux to the calculation, 2.21 x 10
16

 n/m
2
s, the critical 

stress for full accommodation of fuel swelling can be obtained, with an extremely high 

value of 7000 MPa. This stress level is well beyond the interfacial pressure created from 

the hard-contact of UO2 pellet with Zircaloy cladding. From previous analyses, 

considering the fuel as a deformable, soft pellet does not create a significant difference 

compare to the current assumption of a rigid pellet, shown in Fig. 4.1.14. Therefore, the 

application of the soft-pellet model to the PCMI analysis may not be of practical use for 

UO2-Zircaloy fuel rod.  
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4.2 High-Burnup Constant Power Analysis 

 The low-burnup constant power test case provides an insight to the performances 

of the SiC-clad fuel rods without the effect of PCMI, due to the delayed gap closure of 

SiC-clad fuel rods. A second analysis using a high-burnup constant power test case is 

carried out to extend the burnup of the fuel rod, so that PCMI (particularly hard-contact) 

between the fuel pellet and the ceramic SiC cladding eventually occur. The distinctive 

material properties of the SiC such as high stiffness, lower thermal expansivity, and 

negligible creep and plastic deformation may lead to distinctive PCMI effects. 

4.2.1 Power History 

 The power history for this high-burnup test case is the same for both Zircaloy and 

SiC fuel rods, using a constant linear heat generation rate of 16.4 kW/m. The discharge 

burnup is 64 GWD/MTU after 1730 effective full-power days, which is shown in Fig. 

4.2.2. This burnup is 8 GWD/MTU higher than the previous test case, with a discharge 

burnup of only 56 GWD/MTU, typical of most commercial PWRs in the United States. 

However the trend is toward higher burnup to accommodate power uprates and longer 

cycle lengths. 

 Burnup and fission gas release as a function of time is plotted Fig. 4.16, it is also 

indicated that the fission gas release is dependent of burnup. Two distinctive regimes 

were observed, a moderate fission gas production rate at lower burnup, and transit on a 

rapid release rate after 39 GWD/MTU.   
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Figure 4.15 Linear heat generation rate vs. time 

 

Figure 4.16 Average burnup & fission gas release vs. time 
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4.2.2 Thermal Conductivity 

 The degradation of thermal conductivity behaves in a similar fashion as the lower-

burnup test case, shown in Fig. 4.17.  In both cases, the DPA increases monotonically 

with burnup, therefore, the strongly DPA-dependent SiC thermal conductivity will show 

similar degradation behavior.  

 

Figure 4.17 Degradation of thermal conductivity vs. burnup  
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days. Overall, SiC cladding fuel rod results in a delayed occurrence of PCMI and a 

extended time of soft-contact. 

 One should notice after hard-contact, the significant rise of interfacial pressure. 

This phenomenon was discussed previously for the hard-contact of Zircaloy, however, 

now the interfacial pressure accumulation is much more severe for SiC cladding, due to 

its high elastic modulus and lower degradation with temperature and irradiation. At EOL, 

the interfacial pressure for SiC cladding is 64.15 MPa, which is 2.3 times larger than 

what of Zircaloy cladding.      

 Significant interfacial pressure buildup causes the cladding hoop stress to also 

increase rapidly with hard-contact, and this behavior is again more severe for SiC 

cladding as shown in Fig 4.19. After the initial increase upon hard-contact, the hoop 

stress of Zircaloy starts to increase at a moderate rate. This is because of Zircaloy’s 

ability to creep, which relieves the excessive accumulated stress coming from fuel 

swelling. SiC’s deficiency to creep will allows the accumulation of stress on the cladding 

until it finally fails. Monolithic SiC cladding fails in a brittle fashion immediately upon 

reaching its maximum flexural strength, which has a lower limit of 260 MPa from reports 

by Ross et al.[9].   

 Cladding hoop stress again shows the same trend from compressive to tensile 

after hard-contact. The magnitude of SiC hoop strain is very small, shown in Fig. 4.20, 

until reaching hard-contact. After hard-contact, the compressive-to-tensile transition soon 

occurs. Tensile stress in SiC may leads to stress corrosion cracking, which is another 

major failure mechanism for cladding. The effect of stress corrosion cracking is not in the 

scope of focus in this research.  
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Figure 4.18 Gap width & interfacial pressure vs. burnup  

Table 4.2 Time & burnup comparison for soft/hard contact in Zircaloy/SiC clad fuel 
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Figure 4.19 Cladding hoop stress vs. burnup  

 

Figure 4.20 Cladding hoop strain vs. burnup  
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4.2.4 Fuel Radial Displacement vs. Gap Width 

 The fuel radial displacement is plotted with gap width in Fig. 4.21 to demonstrate 

how FRAPCON models the soft-contact regime with the assumption of relocation strain 

recovery during soft-contact. For fuel rods with distinctive material properties, soft-

contact always occurs at initial gap closure. During soft-contact, pellet deforms 

differently: Zircaloy pellet shrinks and SiC pellet expands in a very small rate. The 

shrinkage of pellet is due to the reduction of fuel swelling that is caused by cladding 

inward creep and relocation strain accommodation. Since SiC cladding does not creep 

down, this additional relocation strain will only be accommodated by fuel swelling, 

which results a longer time for the recovery of the 50% of relocation strain.   

 

Figure 4.21 Gap width & fuel radial displacement vs. burnup 
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4.2.5 Fuel Surface Pressure 

 The fuel surface pressure serves as the driving force for elastic deformation and 

creep, shown in Fig. 4.22. The larger interfacial pressure of SiC fuel rods will exert 

higher pressure on the fuel surface. Consider UO2’s high elastic modulus, the 

corresponding elastic deformation is also very small, shown in Fig. 4.23.  

 

Figure 4.22 Fuel surface pressure vs. burnup 
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Figure 4.23 Fuel elastic strain vs. burnup 
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Figure 4.24 UO2 steady-state creep rate vs. 1/T  

 

Figure 4.25 Fuel radial displacement using the rigid/soft pellet model vs. burnup 
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 The higher-burnup test case allows for evaluation of PCMI effect to the 

performances of the SiC-clad fuel rod. Rapid accumulation of interfacial pressure creates 

larger hoop stress that may eventually lead to cladding fracture once achieving maximum 

flexural stress. Larger interfacial pressure along with higher fuel temperature also induces 

a more significant fuel creep, which decreases the fuel radial displacement. The possible 

effect of the reduced fuel deformation will be discussed in the next section. Overall, 

PCMI of SiC cladding creates a large interfacial pressure that must be mitigated for 

applications in LWR fuel rods.     

4.3 Improved Modeling of Hoop Stress & Modified Rod Design 

 Previous results indicated the problem of high interfacial pressure, particularly in 

ceramic SiC cladding. This will creates large hoop stress upon hard-contact with the 

possibility of complete cladding failure. Two ways are proposed to mitigate this 

disastrous effect: (1) modify fuel rod design, and (2) reduced pellet deformation. Effects 

of both approaches are discussed, and the results are compared with the original design.   

4.3.1 Fuel Rod Design Modification 

 Modifying fuel rod design is a possible approach to mitigate the accumulated 

cladding hoop stress. In the thin cylindrical shell assumption that is adopted by 

FRAPCON, increasing the thickness of the shell will decrease its hoop stress. Therefore, 

a fuel rod with larger cladding thickness is used for PCMI calculations, and results are 

compared with original design. 
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Table 4.3 Modified fuel rod dimensions 

 

 (a) Interfacial pressure 

 Hard-contact takes place earlier, shown in Fig. 4.26. Thicker cladding leads to 

higher fuel temperature because of its higher thermal resistance. As a result, the pellet 

will be hotter and exhibits larger thermal expansion. Overall, thicker cladding leads to an 

earlier hard-contact of pellet and cladding. 

 

Figure 4.26 Interfacial pressure vs. burnup using thicker cladding 
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(b) Hoop stress 

 It is shown in Fig. 4.27 that cladding hoop stress benefits from thicker cladding 

by allowing for a smaller magnitude of compressive hoop stress at BOL and a smaller 

tensile stress at EOL. The hoop stress of the thicker cladding at EOL is decreased to 68% 

of the value of original design, which is below the maximum flexural strength as 

indicated. This beneficial result of thicker cladding by allowing lower hoop stress will 

effectively extends the service lifetime of SiC cladding.     

 

Figure 4.27 Hoop stress vs. burnup using thicker cladding  
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fission gas release and larger thermal expansion of pellet at startup that are generally not 

favorable for fuel performances.    

 

Figure 4.28 Fuel centerline temperature vs. burnup using thicker cladding  
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Table 4.4 Fuel radial displacement at EOL consider the soft-pellet model 
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CHAPTER V 

CONCLUSIONS 

5.1 Monolithic Ceramic Cladding Modeling 

  High-strength ceramic materials such as SiC are considered as one the 

most promising candidate cladding materials for accident tolerant fuel design. Despite its 

significant degradation of thermal conductivity, the ceramic SiC possesses a number of 

advantages including: high melting point, negligible creep under LWR condition, 

dimensional stability under irradiation, high temperature strength, and low oxidation rate. 

These favorable properties may allow SiC-clad fuel rods to push beyond the current 

limits for fuel burnup and operation temperature.  

 The proposed fuel rod design in this research uses a single monolithic SiC layer 

that retains the fission gas. Appropriate SiC material properties were implemented into 

the FRAPCON material module in order to simulate fuel rod performance with 

monolithic SiC cladding. Hence, the updated fuel performance code, FRAPCON-USC, 

was developed. FRAPCON-USC models the material properties listed on Table 5.1.1, as 

a function of temperature, neutron flux, and porosity. The models for material properties 

were obtained from literatures on high-purity CVD SiC.  
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Table 5.1 Material properties of implemented and their governing factors  

(T, Φ, P represents temperature, neutron flux, and porosity) 

 

5.1.1 SiC-Cladding Fuel Performances 

 Two test cases were modeled using the updated FRAPCON-USC code. Case 1 

uses a constant LHGR of 16.4 kW/m with a discharge burnup of 52 GWD/MTU, and 

Case 2 uses the same LHGR but to a higher burnup of 64 GWD/MTU. The significant 

degradation of thermal conductivity and negligible creep are among the most distinctive 

properties. The following advantages of SiC cladding fuel rods were clearly indicated 

when compared with the traditional Zircaloy cladding: (1) gap closure delayed until 

higher burnup (2) delayed and extended time of soft-contact. However, lower thermal 

conductivity of SiC increases the cladding temperature drop across the cladding, hence 

increasing the fuel temperature and fission gas release. 

 SiC cladding does not creep inward to the fuel, the reduction of pellet-clad gap is 

only contributed by fuel swelling and thermal expansion. This will allow the gap to 

remain open longer. Pellet-clad gap creates additional thermal resistance that further 
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increases the fuel temperature. Higher fuel temperature is generally not a favored fuel 

performance parameter because it creates larger amount of fission gas release that leads 

to the ballooning of the fuel rod.  

5.1.2 Pellet Cladding Mechanical Interactions  

 PCMI is initiated after the first contact of pellet and cladding. However, no 

interfacial pressure is yet being accumulated due to the partial recovery of relocation 

strain. Hard-contact will eventually occurs after 50% of the relocation strain has been 

accommodated by fuel swelling. After hard-contact, interfacial pressure accumulates at a 

rapid rate due to te high elastic modulus of SiC and negligible creep and incapability of 

plastic deformation. The buildup of interfacial pressure contributes to the large cladding 

hoop stress. It also induces additional elastic deformation and creep of the fuel pellet that 

was neglected in FRAPCON’s rigid-pellet model.  

 In conclusion, PCMI analysis using the rigid pellet model may give reasonable 

stress/strain estimation for a ductile metallic cladding (Zircaloy) with a brittle ceramic 

fuel (UO2). However, PCMI analysis of brittle ceramic cladding (SiC), the rigid-pellet 

model may misrepresent the true stresses induced in the cladding by neglecting the 

possible fuel deformations.        

5.1.3 Better Modeling and Mitigation of Cladding Hoop Stress 

 Both type of rods experience hard-contact at the higher-burnup test case. The 

corresponding cladding hoop stresses for SiC cladding at the EOL are 334 and 88 MPa. 

This high cladding hoop stress must be mitigated before applying it to practical use. The 

following methods were adapted in this research to provide better modeling and also 



www.manaraa.com

92 

 

mitigation of the hoop stress: (1) creep of the cladding and fuel (2) optimize fuel rod 

design 

(a) Creep of cladding and fuel 

 The creep behavior of both cladding and fuel is indispensable for relieving the 

excessive stresses resulting from PCMI. With the assistance of cladding creep, rapid 

accumulation of Zircaloy cladding hoop stress can be alleviated once the creep rate 

achieves the fuel swelling rate. This can be explained as a reduced fuel swelling rate. 

After hard-contact, cladding expansion is controlled by fuel swelling and cladding inward 

creep. If the cladding creep increases, then the net fuel swelling rate will decrease. This 

will results an overall smaller fuel expansion.  However, lack of creep in SiC will allow 

buildup of stresses on the pellet/cladding interface without any mechanisms to retard the 

fuel swelling. 

 A better modeling accounting for the stress-induced pellet deformation is 

discussed for better modeling of the accumulated hoop stress due to hard-contact. Larger 

fuel surface pressure and higher fuel temperature of SiC cladding induces higher fuel 

creep rate, which reduces the outward fuel swelling rate. The fuel creep acts similar to the 

cladding creep, as their main purpose is also to reduce for the overall swelling rate. From 

previous analysis that considers the stress-induced deformations, the radial displacement 

of the fuel is reduced by 8.8 μm. Reduced fuel deformation will reduce the cladding 

deformation; therefore the cladding hoop stress is reduced. 
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Figure 5.1 Two creep mechanisms for cladding hoop stress mitigation 

(b) Fuel Rod Design 

 Fuel rods with thicker cladding design also decrease the cladding hoop stress. It is 

shown that increasing the cladding thickness from 0.0572 to 0.1 cm will reduce the EOL 

hoop stress by 68%. The downside of thicker cladding is the larger thermal resistance, 

which will increase the fuel temperature by 72 K, therefore, aggravates the fission gas 

release.    

Table 5.2 Results of PCMI mitigation  

 

 PCMI (hard-contact) must be ultimately avoided to ensure the integrity of SiC 

cladding under high burnup operation due to the large cladding hoop stress. Applying 

thicker cladding or more creep-susceptible fuel provides an approach to mitigate the large 

hoop stress, but it also brings drawbacks such as increased fuel temperature, and 

enhanced fission gas release. An optimized fuel rod design with more accurate modeling 

is needed for estimate the PCMI effect of ceramic cladding.  
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